

Über Faktoren, die die Strahlenreaktion von Zellen beeinflussen

Andrzej Wojcik Centre for Radiation Protection Research Stockholm University, Sweden

992	H. Fritz-Niggli, Zürich
1993	HS. Stender, Hannover
1994	J.R. Maisin, Brüssel
1995	LE. Feinendegen, Jülich
1996	M. Abe, Kyoto
1997	U. Hagen, München
1998	A.W.T. Konings, Groningen
1999	K. Aurand, Berlin
2000	T.M. Fliedner, Ulm
2001	I. Szumiel, Warschau
2002	R. H. Clarke, Didcot
2003	A. Kaul, Wolfenbüttel
2004	J.J. Broerse, Leiden
2005	D. Harder, Göttingen
2007	Ch. Streffer, Essen
2010	L.E. Holm, Stockholm
2011	H. Schicha, Essen
2014	WU. Müller, Essen
2014	P. Gourmelon, Faux-Roses
2015	S. Yamashita, Fukushima
2019	R. Loose, Nürnberg

Relevant organisations in radiological protection: ICRP, UNSCEAR, IAEA, plus the European radiation research platforms

MELODI Strategic Research Agenda topics

Strategic Research Agenda of the Multidisciplinary European Low Dose Initiative (MELODI) – 2019

Selected topics from the Strategic Research Agenda

- Effects of spatial and temporal variation in dose delivery
- Dose and dose-rate dependence of cancer risk
- Individual variation in cancer risk

Major lines of radiobiology research at SU

Cellular effects of exposure to mixed beams of high and low LET radiation

Cellular effects of changing dose rate

Cellular effects of very high dose rate

Our main sponsor

Strål säkerhets myndigheten svedish Radiation Safety Authority Individual variation in cancer risk

The mixed beam exposure facility at the Stockholm Univerity

The ²⁴¹Am alpha irradiator – dose rate: 0.21 Gy/min

53BP1 foci in U2OS cells – dose response

Mixed beam-induced foci are more frequent than those induced by alphas The effect is strongest for small foci

53BP1-GFP foci in U2OS cells

Foci in fixed cells

Large focus (Complex damage)

Live image of foci identified by Image J Time: 0-80 min post irradiation, image every 60s

Effect of mixed beams at low doses and low dose rates

VH10

Cellular effects of changing dose rate

Motion experiments

The total dose is the same in all samples.

Cellular effects of changing dose rate Filter experiment

Cellular effects of changing dose rate Images of exposure facilities

0.15 Gy/min - 0.0042 Gy/min

0.11 Gy/min - 0.0027 Gy/min

X-ray source

Cellular effects of changing dose rate

The highest biological effect is always seen in cells which are exposed under conditions of a decreasing dose rate The effect has nothing to do with the adaptive response

Effect of very high dose rate on gene expression in peripheral blood lymphocytes

High dose rate ¹³⁷Cs sources available at the Stockholm University

Gammacell 1000

Effect of very high dose rate on gene expression in peripheral blood lymphocytes

Acute gamma radiation, various dose rates

Acute alpha, X-ray and mixed beam exposure

Currently running experiments at > 10 Gy/min

Individual and seasonal variability in response to radiation

In human peripheral blood lymphocytes the effect of mixed beam radiation is individually and seasonally variable

Dose response of relative mRNA level FDXR splice variant PP1 24 hours after exposure to X-rays (green), alpha particles (red) and mixed beams in PBL from donors 3 (left) and 4 (right) obtained on three different occasions

Frequencies of chromosomal aberrations are being scored as we speak

Hans Langendorff

"Thus, Langendorff focused during his early years of radiobiology research on questions of great scientific interest, many aspects of which remain unanswered even today: mechanisms of cell proliferation, mitotic (cell) cycle, dose fractionation, inherent radiosensitivity, biological consequences of radiation such as cell death, chromosomal damage, recovery from radiation damage and most importantly the dependence of many of these effects on radiation quality".

INTERNATIONAL JOURNAL OF RADIATION BIOLOGY 2019, VOL. 95, NO. 7, 1029–1042 https://doi.org/10.1080/09553002.2019.1623428

Check for updates

REVIEW

Radiobiology at the forefront: Hanns Langendorff and two of his disciples

Christian Streffer

Wo geht es denn hin...

Essen, November 1991

Juli 1990 – September 1996